V(D)J-рекомбинация

Эта статья находится на начальном уровне проработки, в одной из её версий выборочно используется текст из источника, распространяемого под свободной лицензией
Материал из энциклопедии Руниверсалис
Упрощённая схема V(D)J-рекомбинации

V(D)J-рекомбина́ция[1], или V(D)J-реаранжиро́вка[2] (англ. V(D)J-recombination, V(D)J rearrangement), — механизм соматической рекомбинации ДНК, происходящий на ранних этапах дифференцировки лимфоцитов и приводящий к формированию антиген-распознающих участков антител и Т-клеточного рецептора. Гены иммуноглобулинов[en] (англ. Ig) и Т-клеточных рецепторов (англ. TCR) состоят из повторяющихся сегментов, принадлежащих к трём классам: V (от англ. variable), D (от англ. diversity) и J (от англ. joining). В процессе V(D)J-перестройки генные сегменты, по одному из каждого класса, соединяются вместе. Объединённая последовательность сегментов V(D)J кодирует вариабельные домены каждой из цепей рецептора или антитела[2].

Гены иммуноглобулинов и T-клеточных рецепторов

Строение антитела (иммуноглобулина) и T-клеточного рецептора

Молекула антитела (иммуноглобулина) представляет собой тетрамер из двух идентичных тяжёлых (H-цепей) и двух идентичных лёгких цепей (L-цепей). Каждая цепь имеет N-концевой вариабельный участок (вариабельный, или V-домен) и константный участок (константный, или C-домен) на C-конце. Вариабельный домен принимает участие в распознавании антигена, а C-домен отвечает за эффекторные функции. Как следует из названия, аминокислотная последовательность V-домена вариабельна, а C-домен демонстрирует выраженную консервативность. Максимальная изменчивость проявляется именно в области, ответственной за связывание антигена[3]. Антигенсвязывающий участок формируется V-доменами тяжёлых и лёгких цепей (VH- и VL-домены соответственно)[4]. L-цепь содержит один C-домен (обозначается CL), а H-цепь — 3 или 4 домена, которые обозначаются CH1, CH2, CH3, CH4. C-домены не участвуют в распознавании антигенов и необходимы для взаимодействия с рецепторами иммунных клеток, активации системы комплемента и других эффекторных функций[5].

Организация генов иммуноглобулинов в геноме человека

В отличие от большинства генов, гены иммуноглобулинов и T-клеточных рецепторов не присутствуют в целом виде в клетках зародышевой линии и соматических клетках. Образование единого гена, кодирующего V- и C-домены, происходит посредством одного (в случае лёгких цепей) или двух (в случае тяжёлых цепей) актов соматической рекомбинации. V-домены и C-домены кодируются отдельными сегментами V-гена и C-гена соответственно, причём они не могут экспрессироваться поодиночке: в данной системе два «гена» кодируют единый полипептид — лёгкую или тяжёлую цепь. Любой из множества сегментов V-гена может соединиться с любым из нескольких C-генных сегментов. Лёгкие цепи образуются в результате единственного акта рекомбинации. Имеется два типа лёгких цепей: κ и λ. Лёгкая цепь λ образуется при рекомбинации между Vλ-геном и сегментом JλCλ. Буквой J сокращённо обозначают участок, с которым соединяется сегмент Vλ, то есть реакция соединения происходит не напрямую между Vλ- и Cλ-сегментами, а через сегмент Jλ. Этот сегмент кодирует несколько аминокислотных остатков (а. о.) вариабельного участка и в гене, образованном рекомбинацией, сегмент Vλ-Jλ представляет собой один экзон, кодирующий весь вариабельный участок. В случае лёгкой цепи типа κ сборка цепи также осуществляется из двух сегментов, однако после гена Vκ следует группа из пяти сегментов Jκ, которая отделена от экзона Cκ интроном длиной от 2 до 3 тысяч пар нуклеотидов. В ходе рекомбинации Vκ-сегмент может соединиться с любым из Jκ-сегментов, и интактный вариабельный экзон в конечном счёте состоит из сегментов Vκ и Jκ. Jκ-сегменты, расположенные левее от рекомбинирующего Jκ-сегмента, удаляются, а Jκ-сегменты справа от рекомбинирующего сегмента становятся частью интрона между вариабельным и константным экзонами[6].

Тяжёлые цепи образуются в результате не одного, а двух актов рекомбинации, и в их образовании задействованы такие элементы, как VH-ген, D-сегмент и VHCH-генный сегмент. D-сегмент представляет собой участок из 2—13 а. о., разделяющий последовательности, которые кодирует VH-сегмент и JH-сегмент. Участок D-сегментов на хромосоме также находится между множествами VH-сегментов и JH-сегментов. Объединение VH-D-JH происходит в две стадии: сначала один из D-сегментов соединяется с JH-сегментов, а потом VH-сегмент рекомбинирует с объединённым сегментом DJH. Получившаяся последовательность из трёх элементов VH-D-JH экспрессируется совместно с геном CH, который находится справа от VH-D-JH и включает четыре экзона. У человека локус D-сегментов содержит 30 тандемно расположенных D-сегментов, а за ним располагается кластер[en] из 6 сегментов JH. Каким образом обеспечивается, чтобы в актах рекомбинации D-JH и VH-D-JH участвовал один и тот же D-сегмент, пока неизвестно. По названию отдельных элементов процесс сборки единого локуса, кодирующего лёгкую или тяжёлую цепь, получил название V(D)J-рекомбинации[7].

T-клеточный рецептор (англ. T cell receptor, TCR) представляет собой гетеродимер из двух субъединиц: α и β (рецептор TCRαβ) либо γ и δ (рецептор TCRγδ), которые кодируют гены TCRA, TCRB, TCRG и TCRD соответственно. Хотя последовательности, кодирующие δ-цепь ТCR, расположены внутри гена α-цепи, они обычно рассматриваются как отдельный генетический кластер. Как и в случае иммуноглобулинов, T-клеточный рецептор включает константные домены и кодирующие их C-гены, V-домены, которые кодируют V-гены, и разделяющие кластеры C-генов и V-генов J-сегменты (в генах TCRB и TCRD также присутствуют D-сегменты). При формировании каждой из четырёх возможных цепей TCR также происходит V(D)J-рекомбинация[8]. В случае генов TCRB и TRCD, содержащих сегменты D, рекомбинация происходит в два этапа (сначала между сегментами D и J, потом между DJ и сегментами V), а в случае TCRA и TRCG — в один этап[9].

Таким образом, всего семь генных локусов подвержены V(D)J-перестройке: тяжёлой цепи иммуноглобулина (IgH), лёгких цепей κ и λ, а также четыре гена Т-клеточного рецептора, кодирующих цепи α, β, γ, δ: TCRA, TCRB, TCRG и TCRD соответственно. D-сегменты имеются только в гене тяжёлой цепи иммуноглобулина, TCRB и TCRD[10].

V-гены всех полипептидных цепей, участвующих в распознавании антигена, подвергаются перестройке, но не единовременно, а последовательно. В B-клетках сначала перестраиваются гены тяжёлых цепей, а затем — лёгких цепей (сначала перестраиваются лёгкие цепи типа κ, затем — типа λ). В T-клетках при формировании генов TCRαβ сначала перестраиваются гены β-, а потом — α-цепей. В случае TCRγδ перестройка генов вариабельных доменов γ- и δ-цепей происходит почти одновременно[11].

Механизм

V(D)J-рекомбинация проходит до конца только в T- и B-клетках под влиянием сигналов дифференцировки из внешней среды. Начальные этапы перестройки в виде DJ-рекомбинации могут происходить и в клетках, не относящихся к T- и B-клеткам, например, естественных киллерах, которые по происхождению близки к T-клеткам[12]. Молекулярный механизм V(D)J-рекомбинации всех семи локусов иммуноглобулинов или T-клеточных рецепторов идентичный[13]. Последовательность реакций V(D)J-рекомбинации описана в предыдущем разделе, здесь же будут описаны молекулярные механизмы V(D)J-рекомбинации.

Рекомбинация происходит по сигнальным последовательностям ДНК, непосредственно прилегающим к генным сегментам. Эти консервативные последовательности называются сигнальные последовательности рекомбинации[en] (англ. recombination signal sequence, RSS) и состоят из семи нуклеотидов — 5'-CACAGTG-3' (гептамер), за которым следует последовательность из 12 или 23 нуклеотидов — спейсер, и ещё одного консервативного блока из девяти нуклеотидов — 5'-ACAAAAACC-3' (нонамер). Последовательность спейсера может варьировать, но длина консервативна и соответствует одному (12 нуклеотидов) или двум (23 нуклеотида) виткам двойной спирали ДНК. Перестройка происходит только между двумя RSS, одна из которых имеет спейсер 12 пар оснований (п. о.), другая — 23 п. о., так называемое «правило рекомбинации 12/23». Эта закономерность строения RSS определяет правильную последовательность рекомбинации: например, локус IGH имеет RSS длиной 23 п. о. на 3'-конце каждого V-сегмента, RSS длиной 12 п. о. на 3’- и 5’-конце каждого D сегмента и RSS длиной 23 п. о. на 5'-конце каждого J-сегмента. Таким образом, V-J-реаранжировка этого локуса невозможна. Порядок расположения консенсусных последовательностей у V- или J-сегментов может быть любым, то есть разные спейсеры служат лишь для предотвращения рекомбинации V- или J-сегмента с таким же сегментов и несут никакой значимой информации[14].

Сигнальные последовательности — recombination signal sequence (RSS)

Для внесения разрывов в ДНК при V(D)J-рекомбинации необходимы и достаточны белки RAG1[en] и RAG2[en] (англ. recombination activation genes). Мыши, лишённые генов RAG1 и RAG2, имеют только незрелые T- и B-клетки, поскольку неспособны формировать функциональные антитела и T-клеточные рецепторы. RAG1 распознаёт сигнальные последовательности с соответствующими спейсерами длиной 12 или 23 п. о. и рекрутирует RAG2 в реакционный комплекс. Сигнальная последовательность из 9 п. о. является сайтом первичного распознавания, а последовательность из 7 п. о. указывает место внесения разреза. В результате димеризации RAG1 и RAG2 связанные с ними последовательности сближаются, чему также способствуют комплементарные взаимодействия между сигнальными последовательностями, которые возможны благодаря их палиндромности[en]. В сближении последовательностей, связанных RAG1 и RAG2, также принимает участие гетеродимер HMG1/2. Комплекс RAG1/2 вносит одноцепочечный разрыв в каждый из двух участков, которые будут соединены в результате рекомбинации. На концах каждого из двух одноцепочечных разрывов имеются 5'-концевая фосфатная группа и 3'-концевая гидроксильная группа (3'-OH). 3'-OH, которая прилегает к кодирующему сегменту, атакует фосфодиэфирную связь[en] в соответствующей позиции на другой стороне дуплекса ДНК. В результате этой реакции на месте каждого одноцепочечного разрыва формируется шпилька, в которой 3'-конец одной из двух цепей спирали ДНК ковалентно связана с 5'-концом второй цепи дуплекса. Шпильки на концах кодирующих сегментов распознаются гетеродимером из белков Ku70 и Ku80, а белок Artemis[en] раскрывает шпильки. Далее концы кодирующих сегментов соединяются по тому же механизму, что и при негомологичном соединении концов при репарации ДНК. Если недалеко от концевой шпильки происходит разрыв цепи ДНК, то на конце кодирующего сегмента формируется длительный одноцепочечный участок. Далее достраивается комплементарная к нему цепь, и в область конца кодирующего сегмента вводится несколько дополнительных нуклеотидов, которые формируют последовательность, палиндромную по отношению к исходной (поэтому их называют P-нуклеотидами от англ. palindromic). Дополнительные нуклеотиды между кодирующими сегментами могут появиться и в результате другого процесса. Фермент терминальная дезоксинуклеотидилтрансфераза (TdT) вводит небольшое количество (до 20, обычно менее 10) дополнительных случайных нуклеотидов (N-нуклеотидов) между концами сегментов, после чего они сшиваются по пути негомологичного соединения концов[15]. Вырезанный участок, содержащий сигнальные последовательности RSS, замыкается с образованием кольцевидной структуры, известной как рекомбинационное вырезанное кольцо (REC от англ. Recombination excision circle)[9].

Молекулярный механизм V(D)J-рекомбинации

Воссоединение концов кодирующих сегментов происходит по механизму негомологичного соединения концов при участии ферментов ДНК-лигазы IV, ДНК-зависимой протеинкиназы, белков Ku70/Ku80, XRCC4[en] и фактор негомологичного соединения концов 1[en][16]. На этом сборка гена, кодирующего цепь иммуноглобулина или TCR, завершается. ДНК-зависимая протеинкиназа участвует в активации белка Artemis, разрешающего шпильки, за счёт фосфорилирования[17]. Совокупность белков RAG1, RAG2, ДНК-зависимой протеинкиназы, ДНК-лигазы IV, TdT, HMG1/2 и Ku70/Ku80 называют V(D)J-рекомбинационным комплексом[18].

Последствия

Благодаря V(D)J-рекомбинации в организме позвоночного животного создаётся колоссальное разнообразие антител. Один только локус тяжёлых цепей может дать более 108 различных комбинаций VH-JH-CH. Локусы лёгких цепей могут дать около миллиона рекомбинированных цепей типа λ или типа κ[19]. Весь спектр антител в крови в 2008 году Джордж Чёрч предложил называть термином V(D)J-ом[20].

В некоторых случаях V(D)J-рекомбинация может приводить к возникновению инверсий или делеций. Так, иногда в локусах лёгких цепей типа λ сегмент Vλ имеет ориентацию на хромосоме, обратную ориентации локуса Jλ-Cλ, и разрыв и воссоединение в этом случае приведёт к инверсии удаляемого участка с сигнальными последовательностями вместо его вырезания из состава хромосомы (делеции). Функциональные последствия инверсии для иммунной системы не отличаются от последствий делеции. Рекомбинация посредством инверсии встречается в локусах TCR, тяжёлых цепей, а также лёгких цепей типа κ[21].

Когда перестройка конкретного V-гена завершается успешно, то экспрессия генов RAG останавливается, и ген на гомологичной хромосоме остаётся неперестроенным и не функционирует. Примерно две трети неудачных случаев V(D)J-рекомбинации связаны со сдвигом рамки считывания. В случае, если перестройка оканчивается неудачей, V(D)J-рекомбинация начинается на гомологичной хромосоме и при её успешном завершении ген на гомологичной хромосоме остаётся единственным функционирующим, то есть происходит аллельное исключение. В 45 % случаев V(D)J-рекомбинация происходит неудачно на обеих хромосомах лимфоцита, и он погибает апоптозом. В случае αβ-TCR при неудачной перестройке гена α-цепи процесс редактирования перезапускается и ген RAG экспрессируется повторно. Рекомбинация продолжается с участием Vα-сегмента, который не был вырезан из хромосомы и не попал в эксцизионное кольцо. Процесс может повторяться до образования функционального гена, кодирующего лёгкую цепь. При беременности или при распознавании T-клеткой аутоантигена может происходить редактирование гена α-цепи. Если редактируется ген α-цепи, который находится в зародышевой конфигурации на второй хромосоме из пары гомологов, то может возникнуть ситуация, нарушающая правило аллельного исключения: в одной T-клетке будет присутствовать два TCR с одинаковыми β-цепями, но разными α-цепями[22].

Нарушения V(D)J-рекомбинации приводят к развитию иммунодефицитных состояний. При синдроме тяжёлого комбинированного иммунодефицита уровень V(D)J-рекомбинации в локусах, кодирующих иммуноглобулины и T-клеточные рецепторы, очень низок. Причиной синдрома тяжёлого комбинированного иммунодефицита являются мутации, которые делают нефункциональными белки V(D)J-рекомбинаци: RAG1, RAG2, Artemis или ДНК-зависимую протеинкиназу[23][17].

История изучения

На основании данных о наличии константных и вариабельных доменов в молекуле иммуноглобулина Дрейер и Беннет в 1965 году высказали предположение о том, что в построении единой тяжёлой или лёгкой цепи иммуноглобулина участвуют два гена — V и C[24]. В 1976 году Судзуми Тонегава начал серию экспериментов и показал, что гены, кодирующие антитела, претерпевают перестройки, за счёт которых создаётся огромное разнообразие антител[25]. В 1987 году Тонегава получил Нобелевскую премию по физиологии и медицине за открытие механизмов разнообразия антител[26].

Примечания

  1. Д. Мейл, Д. Бростофф, Д. Рот, А. Ройтт. Иммунология. — 7 (оригинальное). — Москва: Логосфера, 2007. — С. 105. — 568 с. — ISBN 9785986570105.
  2. 2,0 2,1 Ярилин, 2010, с. 254—259.
  3. Кребс, Голдштейн, Килпатрик, 2017, с. 460—461.
  4. Ярилин, 2010, с. 239.
  5. Ярилин, 2010, с. 232.
  6. Кребс, Голдштейн, Килпатрик, 2017, с. 460—463.
  7. Кребс, Голдштейн, Килпатрик, 2017, с. 463—464.
  8. Ярилин, 2010, с. 252—253.
  9. 9,0 9,1 Ярилин, 2010, с. 255.
  10. Krangel M. S. Gene segment selection in V(D)J recombination: accessibility and beyond. (англ.) // Nature Immunology. — 2003. — July (vol. 4, no. 7). — P. 624—630. — doi:10.1038/ni0703-624. — PMID 12830137. [исправить]
  11. Ярилин, 2010, с. 258.
  12. Ярилин, 2010, с. 257.
  13. Кребс, Голдштейн, Килпатрик, 2017, с. 465.
  14. Кребс, Голдштейн, Килпатрик, 2017, с. 465—466.
  15. Кребс, Голдштейн, Килпатрик, 2017, с. 469—470.
  16. Gauss G. H., Lieber M. R. Mechanistic constraints on diversity in human V(D)J recombination. (англ.) // Molecular And Cellular Biology. — 1996. — January (vol. 16, no. 1). — P. 258—269. — doi:10.1128/mcb.16.1.258. — PMID 8524303. [исправить]
  17. 17,0 17,1 Кребс, Голдштейн, Килпатрик, 2017, с. 470.
  18. Ярилин, 2010, с. 255—256.
  19. Кребс, Голдштейн, Килпатрик, 2017, с. 464.
  20. HGM2008 new technologies: genome sequencing to molecular imaging symposium abstracts (англ.) // Genomic Medicine. — 2008. — December (vol. 2, no. 3-4). — P. 149—150. — ISSN 1871-7934. — doi:10.1007/s11568-009-9110-9. [исправить]
  21. Кребс, Голдштейн, Килпатрик, 2017, с. 466—467.
  22. Ярилин, 2010, с. 257—258.
  23. Abbas, Lichtman, Pillai, 2015, p. 182.
  24. Галактионов, 2004, с. 75.
  25. Hozumi N., Tonegawa S. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. (англ.) // Proceedings Of The National Academy Of Sciences Of The United States Of America. — 1976. — October (vol. 73, no. 10). — P. 3628—3632. — doi:10.1073/pnas.73.10.3628. — PMID 824647. [исправить]
  26. The MIT 150: 150 Ideas, Inventions, and Innovators that Helped Shape Our World. The Boston Globe (15 мая 2011). Дата обращения: 8 августа 2011. Архивировано 4 марта 2016 года.

Литература

  • Галактионов В. Г. Иммунология. — М.: Издат. центр «Академия», 2004. — 528 с. — ISBN 5-7695-1260-1.
  • Кребс Дж., Голдштейн Э., Килпатрик С. Гены по Льюину. — М.: Лаборатория знаний, 2017. — 919 с. — ISBN 978-5-906828-24-8.
  • Ярилин А. А. Иммунология. — М.: ГЭОТАР-Медиа, 2010. — 752 с. — ISBN 978-5-9704-1319-7.
  • Abul K. Abbas, Andrew H. Lichtman, Shiv Pillai. Cellular and Molecular Immunology. — Philadelphia: Elsevier Saunders, 2015. — ISBN 978-0-323-22275-4.